Role-Based Security in a Hierarchical

Environment
A conceptual and practical exploration

Bas Geertsema

Abstract

We explore the approaches that current security frameworks take in
software development. Some approaches are too basic to be useful in
more complex applications. After identification of the requirements of
a more advanced framework, a conceptual framework is developed
with the distinct feature that a role is bound to a context within a
hierarchy. It resembles the security frameworks found in traditional
file systems. This design provides a fine-grained and flexible control of
permissions. An implementation is developed in Microsoft SQL Server
2005 based on this conceptual framework. The implementation is
extended with extra features for fast performance. A full specification
of the implementation is available.

Keywords

software development, design, security, framework, sql, role-based,
tree, hierarchy, sql server 2005

Version 1.0 / first public release, October 2007

Contents

Designing @ SECUNILY framEWOIKciiiiiiieiiiiee ettt e e e s e e e e s b te e e e s abaeeeenbeeeesnneeas 2
T oo [UTo1 A Te] o ST TSSO PPT PR PP PP 2
Approaches to a SECUNItY fFramMEWOIKcc.uviiiiiiie e et e e et e e e rbee e e e aree e e anes 2
Developing the conceptual frameWOrK. ... e 4

An implementation of the framMEWOIK ... e e e e e rre e e e e e e eannes 9
IMProving the fFrameEWOIKeii e e e e s s b e e sraba e e e ssasaeeeas 13
o o oY AR A Y A 1= Y [o~ P 13
o T o Bo T Be =T 4 =T o [OOSR PR UUPTUPPTRPPOPRP 17
L6073 Tol [T To o W TP RTOPR PR TRPRP 18

Appendix A Framework database definition........cccco i 19

l1|Introduction

Designing a security framework

Introduction

Every application that grows beyond your own personal domain will at some point face the need to
deal with security issues. With the arrival of the internet and the movement of moving applications
online this has only become more important. The security framework is one of the foundations of an
application and must be considered in all stages of the software development process. An
implementation should be embedded in any software project as early as possible. In this paper we
will explore security frameworks from a conceptual point of view first. This allows us to look at
different approaches and the differences between them. In the second part of this paper we will
develop a powerful and generic security framework based on these insights and provide an
implementation developed in MS SQL Server 2005.

Approaches to a security framework
In the following section we will take a high level view on the concept of security frameworks, how we
defined it and the different approaches that can be taken in the design of a framework.

Definitions
Throughout this paper, we often refer to security related terms. We start off by defining these terms
so it is clear what we understand by these terms:

1. System — A system is the application, or collection of applications, that offers the functions to
be performed. For example a web-based application such as a forum, that offers the function
to post a reply.

2. Function — An action that can be performed by the system and that adds value to the system.
For example the function to post a reply on an online forum.

3. Principal - The identity that is authorized to perform functions. Note that a principal can be a
regular user, but might as well be another system.

4. Role — The representation of the possibility to perform a set of functions. A principal can be a
member of multiple roles.

These four elements constitute the foundation of most security paradigms and are the building
blocks for the security framework we will develop. A security framework defines how these elements
are designed and how they work together to achieve the security harness for a system.

2|Introduction

Workings of a framework
How can we use the concepts of systems, functions, principals and roles to create a security
framework? Most of the frameworks boil down to the following approach:

The user or application is represented by a principal, or token.

An authentication process identifies the principal.

Before a function is performed, the security framework authorizes the principal to perform
this function. Depending on the outcome of the authorization the function is executed or
not.

A traditional and intuitive setup of a security framework that follows from this is to:

Define the distinct functions in the system
Define the roles
Define the set of functions that each role is allowed to perform

il A

Assign roles to principals

In many cases, this is the easiest and best approach to take. However, for some systems this is just
not flexible enough and does not cover the requirements. One disadvantage of this traditional
framework is that the roles are context unaware. This means that a principal is either in a role, or it is
out. And when it is in, it has access to all functions and resourced allowed by that role. It does not
take in account upon which part of the system a function performs. In short, it is not possible to
partition your security system beyond the initial partitioning based on roles. In some systems there is
a need for extra partitioning. For example, most ERP (Enterprise Resource Planning) systems will
provide partitioning based on customer. Or within a big organization, a system can be partitioned in
several organization units. In these cases, an account manager will only be able to see the customer
he or she is assigned to. And the HRM manager at location A will not be able to perform functions on
employees at location B.

In these setups the security frameworks faces a new challenge: how to incorporate both the role-
based partitioning and the system partitioning. A solution is to make the roles what we call context-
aware. This means that a role is applicable, based on role and the context the function is performing
on. For example, imagine you are developing a forum web application. A forum can consist of
multiple sub forums. You want to embed the possibility to assign different moderators for different
sub forums. Quickly, you figure out that using pure role-based security will not work in this case. You
setup a scheme where you assign a pair of both role and sub forum to your moderators. In this case,
the sub forum is the context. Context-aware role based security frameworks are very common. Just
think of file systems where roles are assigned to files. In this paper, we want to take this framework
one step further, and introduce the concept of a hierarchy.

Put on your architectural glasses, and look to the world outside. Suddenly you will start to see
hierarchies everywhere. On your work, you see regular employees, managers, bosses and bosses-
bosses. Public governance is partitioned in central government, state government, city government,
neighborhood council all the way down to the governance of your own household. Maybe you own a
house, in which you have different rooms, in which you have furniture. When you want to browse to
a picture on your computer you will start at My Documents, browse down to My Pictures, and see a
list of the pictures you own. A variety of hierarchies, but what relates them even more is the fact that

3|Approaches toasecurity framework

when you have power up in the hierarchy, you will have power all the way down the hierarchy. Your
state government controls the budget that will go to the city government, going down to your
neighborhood council. If you own a house, you are most probably also owner the interior. If you own
your My documents folder, you will own your My Pictures folder.

As it turns out, a lot of security frameworks do not only work on role-context basis, but on a
hierarchical, contextual and role-based basis. This means the roles are assigned to a context object,
and this role is automatically applied to all descendants of this context object. A good example of this
kind of security framework is a traditional file system, where roles assigned to a directory are often
automatically applied to all underlying files and directories. In the next section we will develop a
framework that features these properties: hierarchical, context-aware and role-based.

Developing the conceptual framework

In this paper we will outline the conceptual features of such a framework. We will outline the use
case for the security framework we will be developing in the course of this paper. This is based on a
real-world application that we have developed recently. A requirement of the application was that it
could serve multiple clients in an isolated fashion. The application controls human resources and it
closely mirrors the actual organizational structure of the client. For example, a client can define its
organization as one headquarter that contains four physical locations. In turn, each location can
contain one or more functional organization units (sales, logistics, etc). The organization units contain
the employees.

For each client we want to define an administrator that is able to perform a variety of functions that
will configure the application within the boundaries of the client. We also want a system
administrator, who is able to execute modification functions on the whole system, and for all clients.
Because some data is commonly shared between clients, we want all this data in a single database
and provide partitioning on the application level.

Data model

We start off by defining our hierarchy. For the experienced object oriented developer, the composite
pattern will come to mind. In short, this means that we compose a tree by linking uniform objects
that can be either leafs (containing no children) or containers (containing children). Even though you
may have a mix of types in your tree, they all must implement the composite interface. This way you
can treat every object in the tree in a uniform way, which will allow for very abstract and general
code. In our case the common denominator is that every object can be considered as an organization
unit. An organization is an organization unit, a user is an organization unit and a physical location is
an organization unit. So we can neglect the differences between these kinds of organization units,
and from now on we will only refer to organization unit, even though in reality they might be other

types.

Note that we could have abstracted away the organization units and implement the framework more
generic as working on a tree structure of nodes. And thereby not defining what those nodes are.
However, we feel that translating generic and abstract nodes to the actual case of organization units
makes it easier to grasp the workings of the framework.

The most straight-forward for representing a tree in a relational data model is by setting up a 1:n, or
a one-to-many relation between child and parent. Consider the following hierarchy:

4| Developing the conceptual framework

ID Name ParentID ¢0)
CEO Null |

Employeel 2
Employee2 2 Employee
Employee
2

The table on the left represents the hierarchy on the right. In this case, the manager reports to the

HWIN|IE

CEO and both employees report to the manager.

Because of the mismatch between the paradigm of a relational structure and that of a hierarchical
structure, there are more ways of representing a hierarchy in a relational structure. We will come to
that later on, when we will start optimizing the structure. However, as we will see, this setup is the
most intuitive and robust way and will form the foundation upon which you will build extra
functionality to overcome performance problems. Storing a tree in this fashion is known as adjacency
lists.

Authentication and authorization

We defined the data model to represent the hierarchy. Now we will make this model useful by
providing authentication. First the difference between authentication and authorization is explained.
There is not a fixed definition on authentication, but the following definition® covers it quite well:

Authentication is the process of determining whether someone or something is, in fact, who or what
it is declared to be.

In many applications, this is being done through a username/password combination. But it might as
well be biometric identification or voice recognition. | will not go further into authentication since it
is out of the scope of this paper and it differs between different applications. However, | will assume
that after a successful authentication the result is a principal. A principal is the identity upon which
authorization is performed. A principal can be a user, but it might be an application as well. Because
of this abstraction it is preferred not to talk about users, but about principals.

Here follows a definition of authorization’:
Authorization is the process of giving someone permission to do or have something.

Authorization is the part we are the most interested in and that we will explore more in this section.
The definition above is very high-level. There are many ways in achieving the authorization process,
some of which we have explained earlier in our discussion of approaches to a security framework. A
pure role-based approach turned out to be too simple to meet our requirements. The framework we
develop performs authorization based on roles and a context in a hierarchical structure. In effect this
means a principal is assigned a role with the following properties:

! http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci211621,00.html
? http://www.bitpipe.com/tlist/Authorization.html

5|Developing the conceptual framework

e Role code

e Context

e Minimum pathlevel
e Maximum pathlevel

Where Minimum pathlevel <= Maximum pathlevel. Pathlevel is relative, which means the following:

e All ancestors (parents, parents of parents, etc) of the context has relative pathlevel <0
e The context itself has relative pathlevel 0
e All descendants (children, children of children, etc) of the context have pathlevel >0

The properties or the role entity define the function it can perform, the context and the coverage of
the role. The following diagram should make it clearer.

B -
N —— E——
cEo -2
U i
. I
) E—
Productmanage
r o 1
U i
R R B
(et P
Team manager
(Principal) 0
. '
x - oy - ~ F’ - b - o
Database Senior software 1 1
Administrator developer
P — R —

~ F’ 1
Junior software 2
developer

Figuur 10 Hierarchy structure (left) with relative pathlevel (right). The context is marked green.

For example, let’s assume there is a role SalaryRapport which gives the principal insight in salary
details of an employee. In most cases, a manager is allowed to see its subordinates’ salaries. And in
general the manager is not allowed to see the salaries of its bosses. So the role SalaryRapport would
have the parameters:

RoleCode=SalaryRapport, Context=manager, MinPathLevel=0, MaxPathLevel=100

Where 100 is an arbitrary large number (In most cases you probably do not want a hierarchy nesting
100 levels, but feel free to put the number up). This means the role is applicable to the context itself
(relative pathlevel = 0) and all descendants (relative pathlevel > 0). In the same way, roles that are
only applicable to the context have MinPathLevel=0 and MaxPathLevel=0. The following table lists
common cases with the applicability of the role:

MinPathLevel MaxPathLevel Applicable to

0 0 Context

0 Max Context and all descendants

1 Max All descendants of context
-Max 0 Context and all ancestors
-Max -1 All ancestors of context

1 1 Only direct children of context

6|Developing the conceptual framework

This approach of defining roles and role applicability gives you enormous flexibility and works in an
intuitive way. We will show some examples of roles. Let’s assume we have identified the following
role

Role = {Context = Team Manager, RoleCode = SalaryRapport, MinPathLevel = O,
MaxPathLevel = 100}

The principal is allowed to execute the function specified by the role on the organization units
marked green in the following diagram:

P ——
CEO

N

T ——

Productmanage
r

R

D

Team manager
(Principal)

l;=l

i - 5
Database Senior software
Administrator developer

P E—

Junior software
developer

Let’s resume with another example that is a bit more complicated. Assume there is a role
ShowEmployeeDetails which shows the obvious person details like name, address, telephone
number, etc. You want the team members to be able to see the user details for their other team
members (peers) and their descendants, but not from the team manager itself (ancestors). You can
define the following role:

Role = {Context = Senior software developer, Context = Team Manager, RoleCode =
ShowEmployeeDetails, MinPathLevel = 1,MaxPathLevel = 100}

—

—i
CEO
J

R

—_—

Productmanage

2
L8

—

—

Team manager
(Principal)

——

Senior software
developer

Junior software
developer

So the trick here it that you actually apply the role to the ‘team manager’, but since MinPathLevel is 1
the team manager itself is not included, but all its direct children (and thus the siblings of the senior
software developer) and their descendants are. Any sibling that is now added as a child of Team
Manager is automatically with the coverage of this role.

Database
Administrator

|

7

7|Developing the conceptual framework

We conclude that a role is not only bound to a single organization unit, but conveys multiple
organization units. And this set of organization units is adaptive, which means that new organization
units inserted will automatically be under the coverage of the role, if it is applicable. You define a role
just once on a single unit, and the tree structure will determine which units are in the coverage set.

We have finished the conceptual part of our security framework. Although these concepts are quite
simple and straightforward, it offers a lot of flexibility and power in your authorization process. In the
next section we will look into an implementation.

8| Developing the conceptual framework

An implementation of the framework

Our implementation is based on Microsoft SQL Server 2005, but one should be able to transfer it to
other DBMS suppliers. There is one feature however that might not be available in other database
servers. These are Common Table Expressions (CTE), which can be used to execute recursive queries.
An equally valid construct is available in Oracle databases. The lack of recursive queries might be a
limitation, but in the next section we will optimize the framework by leaving out the CTEs in the core
functionality and take a different and more vendor independent approach on traversing a tree
structure.

The implementation that we will put forward in this paper is by no means the only right solution. It is
an implementation that we find very practical to work with and performs well. It offers us all the
flexibility and features that we need. Always consider whether you have the same case, and feel free
to tweak parts of the framework to fit your needs.

Data model
We start off by defining our tree structure.

Table 1 OrganisationUnit

Name Type Allows NULL
Id int (primary key, identity increment) No

Parentld int Yes

Name varchar (100) No

Table 2 Role

Name Type Allows NULL
Principalld int (primary key, identity increment) No

Code varchar (50) No
MinPathLevel int No
MaxPathLevel int No
OrganisationUnitld Int No

Test data OrganisationUnit

Id Parentid Name

1 NULL CEO

2 1 Product manager

3 2 Team manager

4 3 Database administrator

5 3 Senior software developer
6 5 Junior software developer

Test data Role

Principalld Code MinPathLevel MaxPathLevel OrganisationUnitid
1 ModifyUserDetails 0 100 1
2 ViewProjectStatus 0 0 2
3 AssignTaskToUser 0 100 3

9| Developing the conceptual framework

4 AskUserForPayRaise -1 -1 4
5 AssignTaskToUser 0 100 5

The meaning of the roles in the test data can be easier to understand in natural language:

e The CEO is allowed to modify user details for itself and all its descendants (that is the whole
company)

e The project manager has a traditional role to view status of projects. This role is bound to the
person itself, and is not working down- or upwards. It would make no sense to do so.

e The team manager is allowed to assign tasks to itself and its descendants (the whole team).

e The database administrator is allowed to ask for a pay raise to its direct parent (the team
manager).

e The senior software developer is allowed to assign tasks to itself and its descendants (the
junior software developer).

The following step is to specify how an application can deduct from this data whether a given action
is permitted for a given principal and a given context organization unit. First we create a database
view that will help us mapping the tree in such a way that we can use our regular relational SQL
operations on it.

WITH OrganisationAncestor AS
(SELECT 1d, Id AS Contextld, Parentld, O AS PathLevel
FROM dbo.Organisationunit
UNION ALL
SELECT a.ld, b.1d AS Contextld, b.Parentld, a.PathLevel - 1 AS PathLevel
FROM dbo.OrganisationUnit AS b
INNER JOIN OrganisationAncestor AS a ON a.Parentld = b.Id),

OrganisationDescendant AS
(SELECT 1d, Id AS Contextld, 0 AS PathLevel
FROM dbo.OrganisationUnit AS c
UNION ALL
SELECT d.Id, e.ld AS Contextld, d.PathLevel + 1 AS PathLevel
FROM dbo.OrganisationUnit AS e INNER JOIN
OrganisationDescendant AS d ON d.Contextld = e.Parentld)

SELECT Id, Contextld, PathLevel FROM OrganisationAncestor AS Ancestor
UNION
SELECT 1Id, Contextld, PathLevel FROM OrganisationDescendant AS Descendant

This view uses two common table expressions. The first CTE is used to recursively traverse from a
given organization unit to all its ancestors. The second CTE is used to recursively traverse from a
given organization unit to all its descendants. The result is a list that can be interpreted as follows:

10| Developing the conceptual framework

A combination of each organization unit, with all its ancestors, itself and its descendants. A relative
pathlevel is calculated with the origin (0) being the organization unit itself. Positive being downwards
in the tree and negative being upwards in the tree.

An example of this would be for the team manager:

Principalld Contextld PathLevel
3 (Team manager) 1 (CEO) -2
3 (Team manager) 2 (Project manager) -1
3 (Team manager) 3 (Team manager) 0
3 (Team manager) 4 (Database administrator) 1
3 (Team manager) 5 (Senior software developer) 1
3 (Team manager) 6 (Junior software developer) 2

The result of this view can become huge very fast in even modest tree sizes, but you will never need
the whole view and filter out most of it, which makes the performance acceptable. This view will be a
very utile tool in the authorization process. In effect it generates the whole sub tree for a given
organization unit at runtime.

With this view in place, it is time to link it with the actual authorization process. We assume there is
an (authenticated) principal identifier, who wants to perform an action on the context organization
unit for which a role code is needed. Written as a function:

CREATE PROCEDURE [dbo].-[AllowedToPerformAction]
@principalld int,
@contextld int,
@roleCode varchar(50),
@allowed int output
AS
BEGIN
SELECT @allowed = COUNT(*) FROM
OrganisationView INNER JOIN
Role ON
OrganisationView.Principalld = Role.Principalld AND
OrganisationView.PathLevel >= Role._MinPathLevel AND

OrganisationView.PathLevel <= Role._MaXPathLevel

WHERE
OrganisationView.Principalld = @principalld AND
OrganisationView.Contextld = @contextld AND
Role.code = @roleCode
END

11| Developing the conceptual framework

The table below shows some results:

@principalld @contextld @roleCode @allowed Meaning

1 (CEO) 4 (Database administrator) ModifyUserDetails 1 The CEO is allowed to modify
user details of the database
administrator

3 (Team manager) 6 (Junior software developer) AssignTaskToUser 1 The team manager is allowed to
assign tasks to the junior
software developer

5 (Senior software 6 (Junior software developer) AssignTaskToUser 1 The Senior software developer

developer) is allowed to assign tasks to the
junior software developer

5 (Senior software 4 (Database administrator) AssignTaskToUser 0 The Senior software developer

developer) is not allowed to assign tasks to

the database administrator

Another utility stored procedure CoverageSetOfRole returns all contextual organization units that are
included in this role for the given principal:

CoverageSetOfRole @principalld=3, @roleCode = "AssignTaskToUser"”

Principalld PrincipalName Contextld ContextName PathLevel
3 Team manager 3 Team manager 0
3 Team manager 4 Database administrator 1
3 Team manager 5 Senior software developer 1
3 Team manager 6 Junior software developer 2

The coverage set is very useful for user interfaces, where one wants to show an overview of the
entities it can perform the actions on. It is good practice to only show those entities for which the
actions are allowed. For example, when the team manager wants to assign tasks to a user, a
dropdown list can be populated with the results of the coverage set. When there are multiple roles
with the same role code assigned to a principal, then the coverage sets of these roles are combined
to form a single coverage set for a role code for a principal.

Also note that the role table is not fully normalized, and for most systems it would make perfect
sense to factor out some properties of the roles (role code, min path level, max path level) in a
separate table and create an intermediate table that couples the organization units and roles. We
have omitted this to make the model simpler and clearer.

This implementation fulfills the needs of our hierarchical role-based security framework. From this
point on it should be fairly easy to implement authorization in a system by calling the correct stored
procedures before executing functions that need authorization. Although fully functional, the
implementation can be improved in terms of performance and functionality. In the next section we
will explore these possibilities.

12| Developing the conceptual framework

Improving the framework

The implementation that we have built so far is fully functional and works fine for smaller
hierarchies. We found, however, that it does not scale very well when the hierarchy gets larger
(10.000 organization units going four levels deep). One reason for this is the use of recursive CTE to
traverse the tree. In our release of SQL server 2005 (including service pack 2), we found that with
more complex queries the execution plan was sub-optimal and caused a lot of temporary
intermediate lookup tables. Furthermore, we needed more information about the tree to implement
load-on-demand in our user interface, which is a must-have if your tree gets larger. We have
developed solutions to overcome these problems. These solutions will be presented in the following
sections:

e Tree traversing in a more efficient way
e Automatic administration of depth of path and direct child count

Efficient tree traversing

Anyone that has been working with hierarchical structures in a relational database server knows it
can become very cumbersome to work with. The core problem is the mismatch between the
paradigm of database servers which is set based and the tree which is hierarchy based. There have
been attempts at developing hierarchical database management systems, but none of these systems
really hit the mainstream. An advantage of a relational DBMS is that it is very effective and efficient
in answering queries that cross-cut over entities. There is a trade-off here between efficiently storing
your hierarchical structure and efficiently querying a hierarchical structure.

In the setup we have implemented so far we have setup a naive relational tree model (Adjacency
Lists), which needs recursion to traverse. We will expand this model with features that enable us to
use fast set-based operations on the tree. There are more ways to implement this. An article by
vadim Tropashko introduces different approaches to this®. We will focus on the nested set and
materialized path approach here.

Nested set. We started out with implementing a nested set. In effect a nested set keeps track of the
index of the node directly left and right of itself. The advantage of this approach is a very fast method
of querying the tree. The disadvantage is that changes in the tree (updates and inserts) are very
costly since the indices of roughly half of the nodes have to be recalculated. This can be a significant
burden. In a tree with about 10.000 nodes every insert will roughly recalculate 5.000 nodes. In
transactions these 5.000 node updates will be logged to provide rollback. With multiple insertions or
updates the transaction log becomes huge and performance decreases unacceptable. There are
more advanced solutions to these problems (by using real numbers instead of integers) but they are
quite difficult to implement. If you intent on taking this course of action the article by Tropashko
provides some pointers.

Materialized path. After the performance problems with the nested set approach we implemented a
materialized path. In effect a materialized path defines the global position of a certain node within
the tree. It defines the path going from the node up to the root node. Once this global position is
calculated, it makes it easy to execute tree-wide queries since you can directly refer to this global

* http://www.dbazine.com/oracle/or-articles/tropashko4

13| Improving the framework

position, instead of performing recursions for each node. The performance of this approach is very
acceptable, and the costs of inserting or updating nodes are much less compared to the nested.

To implement the materialized path we define an extra field called Path in the table
OrganisationUnit. This field will hold our materialized path. The field PathLevel will hold
how deep the node is in the global tree.

Name Type Allows NULL
id int (primary key, identity increment) No
Parentid int Yes
Name varchar (100) No
Path varchar (200) No
PathLevel int No

Furthermore, we want to ensure there is always a consistent and up to date path. A trigger linked to
the OrganisationUnit table can do this.

CREATE TRIGGER [dbo].[UpdateMaterializedPath]
ON [dbo].[OrganisationUnit]
AFTER INSERT, UPDATE, DELETE
AS
IF UPDATE(Parentld) BEGIN
WITH EmployeeLevels AS
(
SELECT
Id,
CONVERT(VARCHAR(MAX), 1d) AS thePath,
0 AS Level
FROM OrganisationUnit
WHERE Parentld IS NULL

UNION ALL

SELECT
e.ld,
x_.thePath + "/® + CONVERT(VARCHAR(MAX), e.ld) AS thePath,
x.Level + 1 AS Level
FROM Employeelevels x
JOIN OrganisationUnit e on e.Parentld = x.Id
)
UPDATE OrganisationUnit SET [OrganisationUnit].[Path]=thePath, PathLevel=Level FROM

OrganisationUnit INNER JOIN EmployeeLevels ON EmployeelLevels.lId =
OrganisationUnit.I1d

WHERE OrganisationUnit_ld IN (SELECT Id FROM inserted);
END

14| Efficient treetraversing

With this trigger in place our OrganisationuUnit table will look like this:

Senior software developer 1/2/3/5
Junio software developer 1/2/3/5/6

Id Parentld Name Path PathLevel
1 NULL CEO 1 0
2 1 Product manager 1/2 1
3 2 Team manager 1/2/3 2
4 3 Database administrator 1/2/3/4 3
5 3 3
6 5 4

With the global materialized path and path level present we can perform the following query to
retrieve all descendants of an organization unit:

SELECT

dbo.OrganisationuUnit.Id,

Child.Id AS Contextld,

Child.PathLevel - dbo.OrganisationUnit.PathLevel AS PathLevel
FROM

dbo.Organisationunit

INNER JOIN

dbo.OrganisationUnit AS Child
ON Child.Path LIKE dbo.OrganisationUnit.Path + "%*

What does this query do? For each organization unit, all organization units are selected that start
with the same path. There is no recursion involved here, and with an index on the Path field the
query is very fast. The index can be utilized because the LIKE clause starts with a fixed path.

Because the roles can also work upwards in the tree we need a query that returns all ancestors of a
given node. This is a bit more complicated, we could change the LIKE clause in the previous query as
follows:

OrganisationUnit.Path LIKE Child.Path + "%*

But this will not perform well since no index can be used in this case and the whole table needs to be
scanned. There is a good solution to this: we already know the ancestors, it is defined in the
materialized path. All we need to do is extract the identifiers of the ancestors from the materialized
path and look them up in the OrganisationuUnit table.

For the extraction of the identifiers we define a user called SplitlIDs:

CREATE FUNCTION [dbo].[SplitlIDs]
(
@IdList varchar(500),
@Delimiter char(l) = “/*
)

15| Efficient treetraversing

RETURNS
@ParsedList table

(
Id int

AS
. definition can be found in appendix A ..
END

Now you can use the new CROSS APPLY clause in MS SQL Server 2005 to execute this user defined
function for each row. The result of the CROSS APPLY operation is a temporary table containing the
identifiers of the ancestors. We can utilize this temporary table to inner join the ancestors.
SELECT OrganisationUnit.ld, Parent.ld AS Contextld, Parent.PathLevel -
OrganisationUnit.PathLevel AS PathLevel

FROM OrganisationUnit CROSS APPLY SplitIDs([OrganisationUnit].[Path], "/") AS
parentlds INNER JOIN

OrganisationUnit AS Parent ON Parent.ld = parentlds.Id

The view that we utilize to map the tree to an intermediate table can now be defined as the union of
the query that traverses upwards in the tree and the query that traverses downwards in the tree.

SELECT
Organisationunit.ld,
Parent.ld AS Contextld,
Parent._PathLevel - OrganisationUnit.PathLevel AS PathLevel

FROM
Organisationunit
CROSS APPLY SplitIDs([OrganisationUnit].[Path], "/") AS parentlds
INNER JOIN OrganisationUnit AS Parent
ON Parent.ld = parentlds.Id
UNION
SELECT

dbo.OrganisationUnit.Id,
Child.ld AS Contextld,
Child.PathLevel - dbo.OrganisationUnit.PathLevel AS PathLevel
FROM
dbo.OrganisationuUnit
INNER JOIN dbo.OrganisationUnit AS Child
ON Child.Path LIKE OrganisationUnit_Path + "%"

The stored procedures Al lowedToPerformAction and CoverageSetOfRole make use of
this view and are now automatically working with our new tree structure. There is no need to change
these stored procedures.

16 |Efficient treetraversing

The implementation with the materialized path has proven to be fast with test data up to 50.000
organization units. The cost of looking up coverage sets is O(log N) because of the index on the Path
field. This means this implementation performs very well. Also we found that the generated
execution plans are optimal even in more complex queries, in contrast with the implementation
using recursive CTE which generated sometimes very poor execution plans resulting in poor
performance.

Load-on-demand

For most applications it is worthwhile to invest in load-on-demand functionality in the presentation
of you tree. This means that upon the first request you only show a subset of the tree (or coverage
set) and you fetch other subsets of the tree only on demand of the client, for example when the
client is expanding a node to see its children. To create load-on-demand we have create a second
stored procedure, CoverageSetOfRoleOnDemand, to return the coverage set with two
additional parameters:

e (@topOrganisationUnitld - Defines the organisation unit id which is the root of the
subset tree to return. The organisation unit itself is in the resultset.

e @maximumDepth —The number of levels to include in the resultset. A maximumbDepth of 1
means only the direct children are in the resultset.

When a user expands an organization unit in the user interface, the system will fetch the underlying
children that are covered by the role coverage set.

In the user interface you only want to show the option to expand an organization unit when it
actually has children. Otherwise the user interface would just show no children, even though the
user expected that expanding the organization unit would show its children. To solve this, and create
a more usable user interface, we add an extra field to the OrganisationUnit table. This field,
ChildCount, will hold the amount of direct children each organization unit has. Depending on
ChildCount > 0, the user interface can show the option to expand or not.

To keep track of direct Chi ldCount we add a trigger to the OrganisationUnit table:

CREATE TRIGGER [dbo]. [UpdateChildCount]
ON [dbo].[OrganisationUnit]
AFTER INSERT, UPDATE, DELETE
AS
IF UPDATE(Parentld) BEGIN

UPDATE OrganisationuUnit

SET OrganisationUnit.ChildCount = OrganisationUnit.ChildCount -

(SELECT COUNT(*) FROM deleted WHERE deleted.Parentld = OrganisationUnit.Id)
WHERE OrganisationUnit.ld IN (SELECT Parentld FROM deleted)

UPDATE Organisationunit
SET OrganisationUnit.ChildCount = OrganisationUnit.ChildCount +
(SELECT COUNT(*) FROM inserted WHERE inserted.Parentld = OrganisationUnit.Id)
WHERE OrganisationUnit.ld IN (SELECT Parentld FROM inserted);
END

17| Load-on-demand

This will automatically make sure Chi IdCount is always up-to-date.

Conclusion

We started with an introduction on the importance of security frameworks and the different
approaches one can take in establishing a security framework. A common security framework makes
use of role-based security whereby a principal is given a role which is valid system-wide. In many
systems this is not powerful enough and needs to be more fine-grained and flexible. We developed a
conceptual security framework based on roles combined with a context. The context is also part of a
hierarchy. The roles we defined work either upwards or downwards in the hierarchy. This framework
is both fine-grained and very flexible, which we showed with some examples of role usage. The
conceptual framework defines basic data structures and operations. A basic but fully functional
implementation was developed based on Microsoft SQL Server 2005. We identified two performance
issues: first the use of recursion within the database and second the lack of load-on-demand. In the
last section we extended the framework to resolve these issues. A full definition of the
implementation is available in appendix A. The implementation can be used as-is or can be seen as a
foundation from which a more elaborate security framework can be developed.

18| Conclusion

Appendix A Framework database definition

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON
GO

IF NOT EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N"[dbo]-[OrganisationUnit]®) AND type in (N"U%))

BEGIN

CREATE TABLE [dbo].[OrganisationuUnit](
[1d] [int] IDENTITY(1,1) NOT NULL,
[Parentld] [int] NULL CONSTRAINT [DF_OrganisationUnit_Parentld] DEFAULT (NULL),
[Name] [varchar](100) NOT NULL,
[Path] [varchar](200) NOT NULL CONSTRAINT [DF_OrganisationUnit_Path] DEFAULT ("7),
[PathLevel] [int] NOT NULL CONSTRAINT [DF_OrganisationUnit_PathLevel] DEFAULT ((0)),
[ChildCount] [int] NOT NULL CONSTRAINT [DF_OrganisationUnit_ChildCount] DEFAULT ((0)),
CONSTRAINT [PK_OrganisationUnit] PRIMARY KEY CLUSTERED

(
[1d] ASC

JWITH (PAD_INDEX = OFF, IGNORE_DUP_KEY = OFF) ON [PRIMARY]

) ON [PRIMARY]

END

GO

IF NOT EXISTS (SELECT * FROM sys.indexes WHERE object id =
OBJECT_ID(N"[dbo]-[OrganisationUnit]®) AND name = N"IX_OrganisationUnit®)

CREATE UNIQUE NONCLUSTERED INDEX [IX_OrganisationUnit] ON [dbo].[OrganisationUnit]
(
[Path] ASC
JWITH (PAD_INDEX = OFF, IGNORE DUP_KEY = OFF) ON [PRIMARY]
GO

IF NOT EXISTS (SELECT * FROM sys.indexes WHERE object id =
OBJECT_ID(N"[dbo]-[OrganisationUnit]®) AND name = N"IX_OrganisationUnitParent”®)

CREATE NONCLUSTERED INDEX [IX_OrganisationUnitParent] ON [dbo].[Organisationunit]
(
[Parentld] ASC
JWITH (PAD_INDEX = OFF, IGNORE DUP_KEY = OFF) ON [PRIMARY]
GO

SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

IF NOT EXISTS (SELECT * FROM sys.triggers WHERE object_id =
OBJECT_ID(N*"[dbo] - [UpdateChildCount]*))

EXEC dbo.sp_executesql @statement = N"CREATE TRIGGER [dbo].[UpdateChildCount]
ON [dbo].[OrganisationUnit]
AFTER INSERT, UPDATE, DELETE
AS
-- Only update the childcount when Parentld field is changed
-- Note that the deleted and inserted table can contain multiple rows
IF UPDATE(Parentld) BEGIN
-- Decrement the childcount with 1 for all parents of deleted nodes
UPDATE OrganisationuUnit
SET OrganisationUnit.ChildCount = OrganisationUnit.ChildCount -
(SELECT COUNT(*) FROM deleted WHERE deleted.Parentld = OrganisationUnit.1d)
WHERE OrganisationUnit.ld IN (SELECT Parentld FROM deleted);

-- Increment the childcount with 1 for all parents of inserted nodes
UPDATE OrganisationuUnit
SET OrganisationUnit.ChildCount = OrganisationUnit.ChildCount +
(SELECT COUNT(*) FROM inserted WHERE inserted.Parentld = OrganisationUnit.l1d)
WHERE OrganisationUnit.ld IN (SELECT Parentld FROM inserted);
END*
GO

SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

IF NOT EXISTS (SELECT * FROM sys.triggers WHERE object_id =
OBJECT_ID(N"[dbo] - [UpdateMaterializedPath] "))

EXEC dbo.sp_executesql @statement = N"CREATE TRIGGER [dbo].[UpdateMaterializedPath]
ON [dbo].[OrganisationUnit]
AFTER INSERT, UPDATE, DELETE
AS
-- only update if the Parentld field has changed
IF UPDATE(Parentld) BEGIN
-- calculates the path using recursive CTE
WITH EmployeelLevels AS
(
SELECT
Id,
CONVERT(VARCHAR(MAX), 1d) AS thePath,
0 AS Level
FROM OrganisationUnit
WHERE Parentld 1S NULL

UNION ALL

SELECT
e.ld,
x.thePath + "=/"" + CONVERT(VARCHAR(MAX), e.ld) AS thePath,
x.Level + 1 AS Level
FROM EmployeelLevels x
JOIN OrganisationUnit e on e.Parentld = x.I1d
)
-- assign the path to the new organisation unit
UPDATE OrganisationUnit SET [OrganisationUnit].[Path]=thePath, PathLevel=Level FROM

OrganisationUnit INNER JOIN EmployeeLevels ON EmployeelLevels.Id =
OrganisationUnit.Ild

WHERE OrganisationUnit.ld IN (SELECT AffectedNode.ld FROM inserted INNER JOIN
OrganisationUnit as AffectedNode ON AffectedNode.Path LIKE inserted.Path + ""%"");

END

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON
GO

IF NOT EXISTS (SELECT * FROM sys.objects WHERE object id =
OBJECT _ID(N"[dbo]-[SplitiDs]") AND type in (N"FN", N*IF", N"TF", N"FS", N"FT"))

BEGIN
execute dbo.sp_executesql @statement = N"CREATE FUNCTION [dbo].[SplitiDs]
(
@ldList varchar(500),
@belimiter char(1l) = *°/"*
)
RETURNS
@ParsedList table
(
Id int
))
AS
BEGIN
DECLARE @Id varchar(10), @Pos int

SET @IdList = LTRIM(RTRIM(@IdList))+ @Delimiter
SET @Pos = CHARINDEX(@Delimiter, @IdList, 1)

IF REPLACE(@IdList, @Delimiter, """") <> ===*

BEGIN
WHILE @Pos > O

BEGIN
SET @Id = LTRIM(RTRIM(LEFT(@ldList, @Pos - 1)))
IF @Id <> ""*""
BEGIN
INSERT INTO @ParsedList (Id)
VALUES (CAST(@Id AS int)) --Use Appropriate conversion
END
SET @ldList = RIGHT(@IdList, LEN(@ldList) - @Pos)
SET @Pos = CHARINDEX(@Delimiter, @IdList, 1)
END
END
RETURN
END
END
GO
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO

IF NOT EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N"[dbo].[Role]")
AND type in (N*U"))

BEGIN

CREATE TABLE [dbo].[Role](
[Principalld] [int] NOT NULL,
[Code] [varchar](50) NOT NULL,
[MinPathLevel] [int] NOT NULL,
[MaxPathLevel] [int] NOT NULL,
[OrganisationUnitld] [int] NOT NULL

) ON [PRIMARY]

END

GO

IF NOT EXISTS (SELECT * FROM sys.indexes WHERE object id = OBJECT_ID(N"[dbo].[Role]")
AND name = N"IX_RolePrincipalld®)

CREATE NONCLUSTERED INDEX [I1X_RolePrincipalld] ON [dbo].[Role]
(
[Principalld] ASC
JWITH (PAD_INDEX = OFF, IGNORE_DUP_KEY = OFF) ON [PRIMARY]
GO
SET ANSI_NULLS ON

GO
SET QUOTED_IDENTIFIER ON
GO

IF NOT EXISTS (SELECT * FROM sys.views WHERE object_id =
OBJECT_ID(N"[dbo]-[OrganisationView] "))

EXEC dbo.sp_executesql @statement = N"CREATE VIEW [dbo].[OrganisationView]
AS

SELECT OrganisationUnit.ld AS Principalld, Parent.ld AS Contextld, Parent.PathLevel -
OrganisationUnit.PathLevel AS PathLevel

FROM OrganisationUnit CROSS APPLY SplitiDs([OrganisationUnit].[Path], "*/"") AS
parentlds INNER JOIN

OrganisationUnit AS Parent ON Parent.ld = parentlds.Id
UNION

SELECT dbo.OrganisationUnit.ld AS Principalld, Child.ld AS Contextld, Child.PathLevel -
dbo.OrganisationUnit.PathLevel AS PathLevel

FROM dbo.OrganisationUnit INNER JOIN
dbo.OrganisationUnit AS Child ON Child.Path LIKE OrganisationUnit.Path +

gy
GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON
GO

IF NOT EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N"[dbo] - [CoverageSetOfRole]") AND type in (N*P", N"PC"))

BEGIN

EXEC dbo.sp_executesql @statement = N"CREATE PROCEDURE [dbo].[CoverageSetOfRole]
@principalld int,
@roleCode varchar(50)

AS

BEGIN

SELECT Principal.ld as Principalld, Principal.Name as PrincipalName, Context.ld as
Contextld, Context.Name as ContextName, OrganisationView.PathLevel as PathLevel

FROM

OrganisationView INNER JOIN

Role ON
OrganisationView.Principalld = Role.Principalld AND
OrganisationView.PathLevel >= Role.MinPathLevel AND
OrganisationView.PathLevel <= Role.MaXPathLevel

INNER JOIN
OrganisationUnit as Principal ON
OrganisationView.Principalld = Principal.ld

INNER JOIN
OrganisationUnit as Context ON
OrganisationView.Contextld = Context.Id

WHERE
OrganisationView.Principalld = @principalld AND

Role.code = @roleCode

END

END

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON
GO

IF NOT EXISTS (SELECT * FROM sys.objects WHERE object id =
OBJECT_ID(N*"[dbo] - [CoverageSetOfRoleOnDemand]) AND type in (N*"P®", N*"PC"))

BEGIN
EXEC dbo.sp_executesql @statement = N"CREATE PROCEDURE [dbo].[CoverageSetOfRoleOnDemand]
@principalld int,
@roleCode varchar(50),
@topOrganisationUnitld int,
@maximumDepth int = 1
AS

-- Returns the subtree of nodes on which the function requiring the role identified by
@roleCode

-— is allowed to execute. Usefull for load-on-demand scenarios.

-- The subtree starts at the node having Id @topOrganisationUnitld and includes all its
descendants

-- that are also in the coverage set of the role.

-- When multiple roles are assigned to the principal the combined coverage set is
returned.

BEGIN

SELECT Principal.ld as Principalld, Principal.Name as PrincipalName, Context.ld as
Contextld, Context.Name as ContextName, OrganisationView.PathLevel as PathLevel

FROM

OrganisationView INNER JOIN

Role ON
OrganisationView.Principalld = Role.Principalld AND
OrganisationView.PathLevel >= Role.MinPathLevel AND
OrganisationView.PathLevel <= Role.MaXPathLevel

INNER JOIN
OrganisationUnit as Principal ON
OrganisationView.Principalld = Principal.ld

INNER JOIN
OrganisationUnit as Context ON
OrganisationView.Contextld = Context.Id

WHERE
OrganisationView.Principalld = @principalld AND
Role.code = @roleCode AND

Context.Path LIKE (SELECT Path + ""%"" FROM OrganisationUnit WHERE
OrganisationUnit. ld=@topOrganisationUnitlid) AND

Context.PathLevel <= (SELECT PathLevel FROM OrganisationUnit WHERE
OrganisationUnit. ld=@topOrganisationUnitld) + @maximumDepth

END

END

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON
GO

IF NOT EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N"[dbo] - [AllowedToPerformFunction]®) AND type in (N"P", N"PC"))

BEGIN
EXEC dbo.sp_executesql @statement = N"CREATE PROCEDURE [dbo].[AllowedToPerformFunction]

@principalld int,
@contextld int,
@roleCode varchar(50),
@allowed int output
AS
-- returns whether the given principal @principalld is allowed to perform the
-- function requiring role identified by @rolecode on the context organisation
-- unit identified by @contextld
BEGIN
SELECT @al lowed=COUNT(*) FROM
OrganisationView INNER JOIN
Role ON
OrganisationView.Principalld = Role.Principalld AND
OrganisationView.PathLevel >= Role.MinPathLevel AND

OrganisationView.PathLevel <= Role.MaXPathLevel

WHERE
OrganisationView.Principalld = @principalld AND
OrganisationView.Contextld = @contextld AND
Role.code = @roleCode
END
END
GO

IF NOT EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id =
OBJECT _ID(N"[dbo]-[FK_OrganisationUnit_OrganisationUnit]®) AND parent_object_id =
OBJECT_ID(N"[dbo]-[OrganisationUnit]®))

ALTER TABLE [dbo].[OrganisationUnit] WITH NOCHECK ADD CONSTRAINT
[FK_OrganisationUnit_OrganisationUnit] FOREIGN KEY([Parentld])

REFERENCES [dbo].[OrganisationUnit] ([1d])
NOT FOR REPLICATION
GO

ALTER TABLE [dbo].[OrganisationUnit] NOCHECK CONSTRAINT
[FK_OrganisationUnit_OrganisationUnit]

GO

IF NOT EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id =
OBJECT_ID(N"[dbo] - [FK_Role_OrganisationUnitContext]®) AND parent_object id =
OBJECT_ID(N"[dbo] -[Role] "))

ALTER TABLE [dbo].[Role] WITH CHECK ADD CONSTRAINT [FK_Role_OrganisationUnitContext]
FOREIGN KEY([OrganisationUnitid])

REFERENCES [dbo].[OrganisationUnit] ([1d])

GO

ALTER TABLE [dbo].[Role] CHECK CONSTRAINT [FK_Role_ OrganisationUnitContext]
GO

IF NOT EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id =
OBJECT_ID(N"[dbo] -[FK_Role_OrganisationUnitPrincipal]®) AND parent_object_id =
OBJECT_ID(N"[dbo] -[Role] "))

ALTER TABLE [dbo].[Role] WITH CHECK ADD CONSTRAINT [FK_Role_OrganisationUnitPrincipal]
FOREIGN KEY([Principalld])

REFERENCES [dbo].[OrganisationUnit] ([1d])
GO
ALTER TABLE [dbo].[Role] CHECK CONSTRAINT [FK_Role_OrganisationUnitPrincipal]

